Контактная информация Телефон: +7 (495) 585-94-08 Время работы: 09:30-18:00
Адрес: Москва, ул. г. Москва , ул. Флотская, д. 26
E-mail: info@sfp-module.ru
 664057689      sfp-moduleru

Корзина
Прайс-лист
Обр. связь

Технологии спектрального уплотнения (WDM)

Весьма эффективным является метод уплотнения оптических несущих — WDM (Wavelength Division Multiplexing). Суть данного метода заключается в том, что ряд информационных потоков, переносимых каждый на своей оптической несущей, с помощью специальных устройств — оптических мультиплексоров — объединяется в один оптический сигнал, который вводится в оптическое волокно. На приемной стороне производится обратная операция демультиплексирования.

Преимущества технологии CWDM:

  • Передача 16-ти независимых сервисов по двум парам оптических волокон.
  • Низкая стоимость по сравнению с DWDM.
  • Гибкость в реализации различных топологий.
  • Передача данных на большие расстояния.
  • Единая система управления всеми узлами CWDM сети.

Что такое CWDM?

Грубое спектральное мультиплексирование — CWDM (Coarse Wavelength Division Multiplexing) — является технологией передачи данных, позволяющей одновременную передачу различных протоколов по одной паре оптических волокон. CWDM базируется на использовании оптических каналов, отстоящих друг от друга на расстоянии 20 нм. Эти оптические каналы, лежащие в диапазоне от 1310 до 1610 нм, специфицированы рекомендацией G-694.2 Международного телекоммуникационного союза (ITU). При расширении диапазона вниз до 1270 нм число возможных каналов передачи увеличивается до 18. Однако в этом случае возникают две проблемы. Во-первых, на более коротких длинах волн потери на излучение почти вдвое больше, а потому максимально допустимое расстояние передачи заметно сокращается; во-вторых, приходится использовать специальные волокна.

Поэтому на практике число возможных каналов передачи не превосходит 16.

Почему CWDM?

Технология CWDM продлевает время «жизни» существующих волоконно-оптических сетей путем использования сетки частот, не используемых традиционными приемопередатчиками. Технология инвариантна к протоколам передачи информации, что позволяет организовать различные телекоммуникационные услуги в одной транспортной среде. Увеличение частотного расстояния между каналами приводит к заметному снижению стоимости активных и пассивных компонентов по сравнению с технологией DWDM — Dense Wavelength Division Multiplexing (плотное спектральное мультиплексирование с расстоянием между каналами 0,8 нм). Кроме того, грубое спектральное мультиплексирование обеспечивает гибкость системы передачи информации и возможность реализации различных топологий.

Какие технологии могут применять операторы для увеличения возможностей существующих оптических сетей?

Имеются три легко-доступные и простые для установки и использования технологии спектрального уплотнения или мультиплексирования с разделением по длинам волн:

  • 2-канальный WDM;
  • грубое спектральное мультиплексирование (CWDM);
  • плотное спектральное уплотнение (DWDM).

Эти технологии могут предложить оператору одну дополнительную длину волны (или виртуальное волокно), 18 добавочных длин волн или до 160 добавочных длин волн. Все эти технологии используют существующее волокно в операторской сети.

Что такое WDM (Wavelength Division Multiplexing)?

Технология для добавления двух или более оптических сигналов с разными длинами волн, передающихся одновременно по одному волокну и разделяемых на дальнем конце по длинам волн. Наиболее типичные приложения (2- канальный WDM) комбинируют длины волн 1310 нм и 1550 нм в одном волокне.

Что такое DWDM (Dense Wavelength Division Multiplexing)?

Технология для объединения до 160 длин волн, передаче их одновременно в одном волокне с последующим разделением на дальнем конце. DWDM использует расстояния между длинами волн вплоть до 25ГГц и требует применение лазеров с очень строгими допусками и стабильностью излучения. Полоса длин волн DWDM занимает округленно от 1530 нм до 1565 нм. В этой же полосе работают легированные эрбием усилители оптического сигнала (EDFA).

В чем основное различие между приложениями WDM, CWDM & DWDM?

В большинстве случаев, WDM наиболее экономичное решение при нехватке волокна в кабеле, дающее выигрыш волокна 2 к 1 или 3 к 1 за счет объединения длин волн 1310 нм, 1550 нм и 1490 нм в одном волокне. В случае, когда требуется больше каналов для расширения емкости существующей волоконно-оптической инфраструктуры, CWDM обеспечивает эффективное решение для оптических пролетов небольшой длины (до 80 км). За невысокую стоимость CWDM может обеспечить увеличение емкости существующего волокна 18 к 1. С текущими характеристиками потерь оптического сигнала в окнах прозрачности 1310 нм и 1490 нм приложения WDM и CWDM наилучшим образом подходят для коротких расстояний. Там где требуется высокая емкость или передача на большие расстояния, решения DWDM — предпочтительный метод для увеличения емкости волокна. С ее высоко-точными лазерами, оптимизированными для работы в окне 1550 нм (для уменьшения потерь), системы DWDM являются идеальным решением для более требовательных сетей. Системы DWDM могут использовать EDFA для усиления всех длин волн в DWDM окне и увеличение длины передачи до 500 км.

Какие преимущества каждой из этих трех WDM технологий?

Двух-канальный WDM (и трех канальный) может быть использован для быстрого и простого добавления дополнительной (или двух дополнительных) длин волн. Он очень прост для установки и подключения и очень недорогой.

CWDM может просто и быстро добавить до 18 дополнительных длин волн на стандартизованных ITU частотах. Она идеальна для сетей умеренных размеров с поперечными размерами до 100 км. Так как расстояния между длинами волн составляет 20 нм, то менее дорогие лазеры могут использоваться, что обеспечивает очень низкую стоимость для решений с умеренной емкостью.

DWDM предлагает высоко-емкие и дальнобойные решения для участков ВОЛС с высоким ростом потребностей в волокне и где необходима передача на большие расстояния. Системы DWDM могут быть развернуты за относительно низкую начальную стоимость и каналы (длины волн) легко добавляются по мере роста. Усилители EDFA вместе с компенсаторами дисперсии могут увеличить дальность систем до нескольких тысяч километров.

Какие ограничения каждой из этих технологий?

Двух (или трех) канальная WDM ограничена одним или двумя каналами, которые могут быть добавлены к каналу 1310 нм. Дальность системы обычно ограничена потерями в канале 1310 нм.

Системы CWDM, хотя и являются многоканальными, но не имеют никаких механизмов оптического усиления и ограничения в дальности определяются по каналу с максимальным затуханием. Более того, каналы из области от 1360нм до 1440 нм могут испытывать наибольшее затухание (от 1 до 2 dB/км) из-за водяного пика в этой области для некоторых типов оптического кабеля.

Системы DWDM обычно ограничены по дальности 4-5 участками усиления из-за шумов усиленного спонтанного излучения (ASE, Amplified Spontaneous Emissions) в EDFA. Имеются средства моделирования, позволяющие точно определить сколько EDFA может быть установлено. На длинных участках (> 120 км) может создавать проблемы дисперсия, что требует установки модулей компенсации дисперсии. Полоса DWDM ограничена длинами волн в пределах от 1530 нм до 1565 нм диапазоном усиления EDFA.

Что такое Reach Extension (увеличение дальности) и как я могу это использовать?

Увеличение дальности (Reach extension) — общепринятый термин для усиления или воссоздания сигнала, чтобы позволить ему пройти большую дистанцию. Из-за аналоговой природы передачи, оптический сигнал, когда передается через оптическое соединение, деградирует из-за дисперсии, потери мощности, перекрестных помех и нелинейных эффектов в волокне и оптических компонентах. Для борьбы с этими нежелательными эффектами используется два распространенных подхода: Регенерация и Усиление. Регенерация — воссоздание сигнала путем конвертирования оптического сигнала к электрическому сигналу, его обработка и затем конвертирование обратно к оптическому сигналу. Усиление — увеличение амплитуды (мощности dB) оптического сигнала без конвертирования к электрическому сигналу.

Что такое регенерация 1R, 2R и 3R?

Имеется три различных уровня оптической регенерации, которые могут быть применены, чтобы увеличить дальность передачи.

  • 1R-amplification: Это техника регенерации добавляет оптическую мощность к сигналу без воздействия на его форму или синхронность. EDFA просто добавляет фотоны во входящий оптический сигнал на определенной длине волны и фазе этого сигнала. Это не восстанавливает и не ресинхронизует входящий сигнал. Побочный эффект EDFA — создание шума усиленного спонтанного излучения, который аккумулируется с каждым EDFA в линии и может быть «очищен» только конвертированием оптического сигнала к электрическому виду и обратно. Типичное количество EDFA в каскадном соединении не более 4 или 5.

     
  • 2R-amplification and reshaping: Эта техника усиливает и восстанавливает форму деградированного сигнала. Форма воссозданного сигнала близка к оригинальному сигналу, но длительность временных циклов (синхронность) не восстанавливается. Накопление джиттера приводящее к потере синхронизации будет ограничивать количество каскадно-установленных 2R регенераторов.

     
  • 3R-regeneration, reshaping and re-timing: Вместе с усилением и восстановлением 3R регенерация также воссоздает оригинальную длительность циклов (синхронность) исходного сигнала, таким образом, создавая идеальную возможность для увеличения жизни синхронных и асинхронных сигналов. Почти неограниченное количество 3R регенераторов могут быть установлены на пути следования сигнала.
Что такое конверсия длин волн и зачем это нужно?

Конверсия длины волны — преобразование из одной длины волны в другую для транспортировки. Из-за характеристик затухания сигналов 1310 нм и 850 нм, иногда необходимо конвертировать эти сигналы к длине волны 1550 нм для передачи их поверх длинных пролетов оптического волокна, получая выгоду от низких потерь на 1550 нм. Конверсия длин волн также используется для преобразования широкополосных оптических сигналов, таких как 1310нм или 1550нм к дискретным ITU CWDM или DWDM длинам волн, что позволяет комбинировать множество длин волн при передаче по одному волокну.

Если я конвертирую мой 1310 нм сигнал к длине волны xWDM, нужно ли мне конвертировать его обратно к 1310 нм перед приемом на дальнем конце?

Нет, обычно не требуется. Большинство оптического оборудования произведенного в последние 10 лет скорее всего имеет широкополосный приемник, который будет работать в диапазоне от ~1260нм до ~1620нм. Это означает, что интерфейс, который передает на 1310нм с большой вероятностью примет сигнал, который был конвертирован для DWDM или для CWDM приложений.

SFP-Module: SFP, SFP+, GBIC, Xenpak, X2, XFP иодули
Форм-фактор
Авторизация
Логин:
Пароль:

[20.02.17] Cisco расширяет сетевое портфолио для сервис-провайдеров
[08.10.14] Huawei ловит на eLTE
[15.03.12] Новые продукты Cisco для малых предприятий
[15.01.12]Cisco развивает ТВ-платформу Videoscape с помощью технологии "видео в облаке"
[01.09.11] Cisco ввела новую сертификацию начального уровня –"сертифицированный техник"
[23.06.11] ФСБ разрешило прямые поставки криптографического оборудования Cisco
[10.05.11] Cisco продемонстрирует интегрированные решения на "Связь-Экспокомм"
[19.04.11] 20 апреля DEPO Computers при участии Cisco продемонстрирует в Москве новейшие ИТ-решения для среднего и малого бизнеса
[18.03.11] Cisco завершила процесс приобретения компании Inlet Technologies


Технология Cisco Telepresence



2010 - 2017 © "SFP-Module" . Все права защищены
При цитировании и использовании любых материалов ссылка на "SFP-Module" обязательна.

Адрес: г. Москва , ул. Флотская, д. 26
Телефон: +7 (495) 585-94-08
E-mail: info@sfp-module.ru


Яндекс.Метрика